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1. Introduction & Data Preparation:

The housing market plays a crucial role in understanding regional economic inequality, household welfare
and long-term demographic trends. California, in particular, has long been one of the most economically
and geographically diverse states in the United States, making its housing market a valuable case for
analysis. This report presents an analysis of the California Housing dataset, accessible through the Scikit-
learn library, which contains median house values for districts across California based on the 1990 U.S.
census data. The aim of this report is to analyse the dataset to understand the factors influencing median
house values, clean the data by cleaning of unrealistic entries and outliers, engineer new features to
enhance predictive capability, build and evaluate linear and regularised regression models, and identify the
best-performing model and the most influential features in predicting housing prices.

To begin this report, it is important to state the features within the dataset — these are: MedInc (median
income), HouseAge (median house age), AveRooms (average number of rooms per household),
AveBedrms (average number of bedrooms per household), Population (block group population), AveOccup
(average number of household members), Latitude, Longitude. The dataset comprises of 20,640 entries
whereby descriptive analysis shows substantial variation across features such as income levels, population
density and housing characteristics. The median house value, which serves as the target feature in this
report, ranges from approximately $14,999 to $500,001 with an average of around $206,855. This wide
range demonstrates the significant housing price disparities across California’s districts in 1990. After
examining the dataset, it was clear that the dataset did not have any missing values, however, it was very
obvious that certain features did contain very unrealistic and unexplainable entries that were identified as
potential outliers — they were: AveRooms, AveBedrms and AveOccup. To add to that, the distributions of
these features are positively skewed with a few extremely high entries. Prior to any data cleaning, it is
worth mentioning that three separate methods were considered to identify and clean of outliers such as
using the 1.5*IQR rule (Tukey’s fences), three sigma-rule or economic intuition.

Firstly, outliers in the AveRooms feature were identified and removed using the three sigma-rule as its
distribution was approximately normally distributed. Entries beyond three standard deviations are extremely
unlikely in this case and can disproportionately affect the model’s performance, this led to 133 entries to be
removed. As a consequence, the outliers within the AveBedrms feature were also removed as these
outliers corresponded to the ones found in AveRooms. Moreover, outliers in the AveOccup feature were
identified and removed using economic intuition rather than the three-sigma rule or Tukey’s fences as both
methods are heavily dependent on the mean of the dataset which was heavily skewed due to numerous
outstanding outliers which would’ve eliminated around 700 entries — most of which would’ve been
genuinely reasonable entries. While there is no strict threshold for household size, using economic intuition
and contextual reasoning suggest that average household sizes greater than 15 are implausible. Although
certain neighborhoods may experience higher levels of overcrowding or shared living arrangements, such
extreme entries are unlikely and were removed — this removed only 19 entries.

To identify which factors most strongly influence housing prices, pairwise correlations between three
features and the median house value were examined — these were: MedInc, HouseAge, AveRooms.

The regression results revealed that median income had fit the data best and had a significantly higher
correlation with housing prices than the other two features, indicating that higher income areas generally
have higher property values. Visualising the relationship between HouseAge and AveRooms with housing
prices shows no clear trend and the analysis corroborates this with negligible correlation coefficients.

Figure 1: Relationship between Features and House Price
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2. Feature Engineering & Models:

Feature engineering is a process that transforms original features within a dataset into new meaningful and
machine-readable features to enhance the performance of machine learning models. These
transformations aim to improve the predictive capabilities to better represent underlying economic,
socioeconomic and demographic factors influencing housing prices. Intuitively, housing prices especially in
a relatively affluent state such as California would see a pattern where properties in more habitable, lavish
and comfortable metropolitan cities to be more expensive such as Los Angeles or San Francisco.
Furthermore, it is also expected that properties along hot-and-coming coastal regions within these big cities
are to be valued more than properties situated in the outskirts as visualised in Image 1 below. Hence, it can
be concluded that geographical location plays a crucial role in determining property values. To capture
these spatial patterns, three features were engineered: Latitude?, Longitude? and the interaction between
them Latitude X Longitude. Spatial patterns describe how housing prices vary across geographic location
reflecting differences in property valuation between coastal and city properties. These new features allow
the model to study and account for any nonlinear and interactive geographical effects on housing prices.

1e6 Median House Value across California Districts with City Names

Prior to running any regression analyses with these new features, the dataset had been randomly allocated
to one of two groups: 80% of the data was allocated to the training group to fit and learn the existing data,
the remaining 20% was allocated to the testing group to test its predictive accuracy on unseen data. This
split ensures that the model is trained on a sufficient pool of the data while reserving a subset for evaluating
its generalisation performance.

The regression analyses begin by evaluating all original features within the dataset against the target
feature, median house values. The fitted model explains approximately 65.2% (R? = 0.652) of the variance
within the training group and 66.9% (R? = 0.669) of the variance within the testing group with
corresponding RMSE values of 0.681 and 0.667 in hundreds of thousands of dollars. This implies the
predictions deviated by roughly $66,700 to &68,100 compared to the actual values within the two groups
respectively. This indicates a reasonably good fit without the use of the engineered features thus far. This
model will be called “Model 1” for simplification purposes when distinguishing between different models.

Model 2 represents the regression with the original features within the dataset plus the engineered
features: Latitude?, Longitude? and the interaction between them Latitude X Longitude. The purpose of
this regression is to observe whether the engineered features can better fit and predict the data better with
the target feature. This fitted model explains approximately 66.0% (R? = 0.660) of the variance within the
training group and 67.6% (R? = 0.676) of the variance within the testing group with corresponding RSME
values of 0.673 and 0.659 (in hundreds of thousands of dollars). This implies that the predictions deviated
by roughly $67,300 to &65,900 compared to the actual values within the two groups respectively.
Therefore, given the results, it can be deduced that this model with the engineered features had fit the data
slightly better with a higher training and testing R?. Surprisingly, the training RMSE is higher in model 2
than in model 1 while the testing RMSE is lower in model 2 than in model. It was expected that given the
addition of the engineered features for R? to rise (which has been realised) and RMSE within both the
training and testing sets to fall (partially realised), this pattern may not continue as we introduce more
models in our analyses.



Ridge regression is a statistical method to prevent overfitting and multicollinearity in a linear regression by
adding a penalty term. This method is particularly useful as it reduces the predictor features toward zero,
reducing variances and leading to more stable and reliable predictions. Prior to analysing our linear models
using Ridge regression and later Lasso regression, the training and testing groups must be scaled or
standardized. This means that the features are all in the same numerical scale with u = 0 and 62 = 1. This
ensures fair regularisation across these features. If these features are not scaled and one or multiple
features is measured in much larger numbers than the others then the penalty term becomes unfairly
unbiased toward features with a smaller magnitude.

Two Ridge models were estimated these were: Model 3 (original features) and Model 4 (original
+engineered features). Both models were evaluated across multiple a levels [0.1, 1, 10, 100, 1,000] to
examine how different levels of regularisation affected performance. For both models, a = 0.1, yielded the
best-balanced performance achieving the lowest RSME and highest R? value. The Ridge model using only
the original features (Model 3) explained 65.2% of the variance and 66.9% of the variance within the
training and testing groups respectively with a corresponding RMSE values of 0.681 and 0.667 (in
hundreds of thousands of dollars). When the engineered spatial features were introduced (Model 4) the
model achieved R? scores of 65.7% and 67.2%, with RMSE values of 0.676 and 0.664 within the training
and testing groups respectively. This demonstrates that the inclusion of the engineered features marginally
improved model predictive performance. It is worth mentioning that as a increases, there is a persistent
downward R? and upward RMSE trend. Moreover, both models were evaluated across multiple a levels
[0.1, 1, 10, 100, 1,000] using 5-fold cross-validation to identify the optimal level of regularisation. The
analyses showed that a = 0.1 produced the highest R? score and was therefore selected as the best
parameter for the final models.

Lasso regression is another method used for regularisation and feature selection. It adds a penalty to the
model based on the absolute value of the coefficients which shrinks lesser important features to zero,
thereby performing feature selection. This makes it very useful to identify the most influential features that
affect housing prices.

Similar to the previous analysis, two Lasso models were evaluated: Model 5 (original features) and Model 6
(original + engineered features). Model 5 explained 53.3% of the variance and 54.8% of the variance within
the training and testing groups respectively with corresponding RMSE values of 0.788 and 0.780 (in
hundreds of thousands of dollars). When the engineered spatial features were introduced (Model 6) the
model achieved R? scores of 53.4% and 54.8%, with RMSE values of 0.788 and 0.779 within the training
and testing groups respectively. Similar to Ridge regression, both models were evaluated across multiple a
levels [0.1, 1, 10, 100, 1,000] and found a = 0.1 to be the best parameter for the final models. This suggests
that Lasso regression actually did worse than Linear and Ridge regression as it had eliminated several
features that had affected regression performance and results.

1 0.6811 0.6672 0.6516 0.6687
2 0.6726 0.6592 0.6603 0.6766
3 0.6811 0.6672 0.6516 0.6687
4 0.6762 0.6637 0.6566 0.6722
5 0.7882 0.7797 0.5334 0.5475
6 0.7878 0.7794 0.5339 0.5479

Table 1: Comparison of all models against respective RSME and R? scores.

Based on the results presented in Table 1, the inclusion of the engineered spatial features did help as it
produced lower RMSE values as well as higher R? scores across Linear, Ridge and Lasso regressions —
Models 2, 4, 6 — compared to the models consisting of just the original features. Although the improvement
in output is negligible, in some cases the difference is less than a percent, it still fitted the data better by
explaining the variation more and the predictions were closer to the actual values.

While the engineered spatial features improved predictive accuracy in Linear and Ridge models, Lasso
eliminated them suggesting that their contribution was not substantial enough once the weaker predictors
were penalised. This suggests that the engineered features are largely rooted in other features such as
median income.



3. Model Analysis

This section of the report evaluates the interpretability and performance of the models developed in the
previous section. The analysis focuses on the best-performing model, comparing the predicted versus
actual housing prices and examining residual patterns to evaluate model fit. This discussion also identifies
the most influential predictors based on coefficient magnitude and evaluates the effects of regularisation
methods, economic relevance and model limitations.

Figure 2: Predicted vs Actual House Price (Linear Regression (All Original and Polynomial Geo Features) - Test Set)
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The scatter plot in Figure 2 shows a clear positive
trend, indicating that the model successfully captures
the overall relationship between predicted and
observed prices. However, some dispersion is visible
at the higher end of the price range where the model
tends to slightly underestimate expensive properties,

and at the lower end, where it marginally
overestimates cheaper houses. This pattern is
typical of linear models and reflects moderate
predictive error but an overall consistent trend.
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Figure 3: Residual Plot (Best Model - Test Set)

Figure 3 visualises the difference between the model’s

predicted and actual values (i.e. the residuals) against 41
the predicted values themselves. It is used to assess
whether the model has homoskedasticity: constant 1

variance of errors. |deally, the residuals should be
randomly scattered around zero without a clear
pattern, indicating that the model captures the
systematic structure in the data and that the errors are
evenly distributed across the predicted house values.
However, as shown in the plot, the residuals are not
scattered evenly around zero, hence, indicating that
the model does not fully satisfy the assumption of
homoskedasticity.

Residuals (Actual - Predicted)

Predicted House Price ($100,000s)

Heteroskedasticity is an issue because it violates a key assumption in linear regression that the variance of
the error terms remains constant. If violated, the model’s standard errors become unreliable, leading to
biased statistical inference such as in hypothesis testing and calculating confidence intervals. To
corroborate this result, the Breusch-Pagan test was conducted to see whether this model is statistically
proven to be heteroskedastic, and it found sufficient evidence to suggest presence of heteroskedasticity in
the residuals. A potential solution to this issue would be to take a transformation of the model such as the
logarithm of the model, however, the Breusch-Pagan test found presence of heteroskedasticity within this
model as well. This may be worth investigating further but this is beyond the scope of this report.

Latitude 14.34 14.34
Longitude 11.64 11.64
AveBedrms 0.79 0.79
MedInc 0.42 0.42
AveOccup -0.3 0.3

Table 2: Coefficient magnitude

Table 2 presents the top five features ranked by coefficient magnitude in the best-performing model.
Latitude and Longitude exhibit the largest coefficient indicating that geographic location remains the largest
predictor of housing prices. This is followed by AveBedrms and MedInc suggesting that higher household
income levels as well as more bedroom count are associated with more expensive properties. On the other
hand, AveOccup , with a negative coefficient, implies that houses with more occupants tend to be located in
cheaper neighborhoods.



Comparing the performance of Ridge and Lasso regression, Ridge achieved slightly higher R? scores and
lower RMSE across both training and testing sets as shown in Table 1. Model 4 — original and engineered
spatial features — performed the best amongst all the models under regularisation methods. This model
was regressed under Ridge with an a = 0.1 suggesting that the Linear model of these features needed
minimal penalisation to obtain optimal performance. This outcome indicates that most predictor features
already contributed meaningful explanatory power and the model benefitted from Ridge through reducing
overfitting rather than drastically altering feature weights. In contrast, the Lasso models applied a stronger
penalty that eliminated several relevant predictor features which weakened its explanatory ability and
lowered predictive accuracy.

Comparing feature magnitude in Table 2, the geographical features Latitude and Longitude as well as the
average number of bedrooms per household were the biggest factors affecting housing prices. This
supports economic and real estate market intuition where it is expected that more wealthy neighborhoods
in big metropolitan cities such as Long Beach in Los Angeles possess more expensive properties.
Additionally, the average number of bedrooms per household reflects both the size and quality of the
property, which are strong determinants of value. Larger homes with more bedrooms typically command
higher prices, as they indicate greater living space and are often located in higher-income areas.

In the previous section, heteroskedasticity was identified as a key limitation of this model. As it has been
forementioned, this will be a brief summary. If it is observed that our error terms do not have constant
variance across all levels of predicted values, the standard errors become unreliable and this sabotages
our results in hypotheses testing as the test statistics calculated would be completely redundant and
harmful for statistical inference as they would increase the chances of a Type | or |l error leading to
misleading statistical interpretation.

As shown in Figure 2, the model performs better on affordable and mid-range priced houses than on
expensive properties. The residuals grew larger and became more dispersed for higher-priced houses,
indicating that the model tends to underestimate their value. This may be due to the factor that houses in
this bracket may be influenced by other factors not captured in the features available or need new features
to capture the effects of proximity to amenities, tourist attractions, public transport etc. Consequently, while
the model generalises well for the majority of properties, it struggles to account for the variability and price
extremes of luxury housing markets.

4. Conclusion

To sum up the report, the model which best represented the dataset and had the best predictive
performance on unseen data was Model 2 — the Linear regression with our original features plus the
engineered spatial features. It explained 66% and 67.7% of the variance within the training and testing
groups respectively, whereby, this model achieved the highest R? scores among all models. Furthermore,
Model 2 also achieved the lowest RMSE values across all models with 0.673 and 0.659 (in hundreds of
thousands of dollars) within the training and testing groups respectively. This signifies that on average our
model’s predictions on housing prices deviated by $67,300 and $65,900 from the actual housing prices
across the two groups.

Based on model outputs, the three most important and influential features for predicting housing prices are:
Latitude, Longitude and AveBedrms. These features keep appearing as the strongest predictors across all
model specifications, confirming their importance in explaining price variation. Their influence has been
discussed in the previous section and their consistent performance across models highlights their reliability
as key factors of housing value.

The main limitation for the linear model is the presence of heteroskedasticity, where the variance of the
residuals increases with higher predicted house prices. As previously discussed, this violates one of the
key assumptions of linear regression and results in unreliable standard errors, reducing the validity of
statistical inference. To combat this, a logarithmic transformation was performed, however, this did not
remove the trend of heteroskedasticity. Therefore, more transformations or solutions should be presented
to eliminate such an issue, however, this is not an objective of this report and goes beyond the scope of the
report.



